
...

Parsing Challenges in Java 8

. Erik Hogeman, Jesper Öqvist, Görel Hedin.
Department of Computer Science

Lund University

.

..

JastAddJ.

JastAddJ is a full source-to-bytecode modular Java compiler

each Java version is a separate module

Java 8 was implemented by Erik Hogeman for his
Master's Thesis

this talk is about the parsing challenges encountered

.. 2

..

Java 8.

Noteworthy features:

Lambdas

Method references

Default methods

.. 3

..

Lambdas.

Java finally has anonymous functions!

(x, y) -> x + y

() -> { action1(); action2(); }

.. 4

..

Lambda Example.

Action listeners the old way:

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

print("hello");
}

});

The new way, using lambda:

button.addActionListener((e) -> print("hello"));

.. 5

..

Method References.

A way of using regular instance methods as lambdas:

Greeter greeter = new MyGreeter();
greetButton.addActionListener(greeter::greet);
exitButton.addActionListener(greeter::exit);

.. 6

..

Default Methods.

Interfaces can have non-abstract methods:

interface Greeter {
default void greet(ActionEvent e) {

print("greetings");
}
default void exit(ActionEvent e) {

print("goodbye");
}

}
class MyGreeter implements Greeter {

// use default implementations
}

.. 7

..

Parsing.

We use an LALR parser for JastAddJ

Generated with the Beaver parser generator

Parser grammar is composed from parts in separate
modules

.. 8

..

Why an LR Parser Generator?.

Advantages of a generated LR parser:

Provably fast

Generator certifies unambiguous grammar

Decent tool support

Bit more powerful than LL

.. 9

..

Java 8 Parsing Challenges.

Ambiguous grammar specification

Reduce-reduce conflicts between subexpressions

Shift-reduce conflict

Unlimited lookahead

.. 10

..

Ambiguous Grammar Specification.

Java spec (highly edited):

Expression -> Lambda
Expression -> ... -> Additive

-> Multiplicative -> ... -> Cast
Cast -> (Type) Lambda

Input:

(T) (a, b) -> a * b;

Possible parse 1:

((T) (a, b) -> a) * b;

Possible parse 2:

(T) ((a, b) -> a * b);

.. 11

..

The second one is desired. We achieved this by:

changed the grammar

lambda as primary expression

lowered priority using precedence declarations

.. 12

..

Lambda Reduce-Reduce Conflict.

Lambda vs less-than expression:

(T<A> s) -> { } // lambda
(T<A) // less-than expression

This is a reduce-reduce conflict.
Similar conflict in Java 5 with type cast:

(T<A>) s // generic type cast
(T<A) // less-than expression

In both cases the T terminal must be reduced to either
RelationalExpression or ReferenceType.

.. 13

..

Lambda Reduce-Reduce Conflict.

We solved the reduce-reduce conflict by giving the related
parsing productions explicit common prefixes:

Relational -> Name < Shift
Relational -> Relational < Shift
...
ReferenceType -> Name < TypeArguments_1

This removed the need to reduce the Name token too early.

.. 14

..

Unlimited Lookahead.

f(T<A, B>::m) // method reference
f(T<A, B> m) // less-than expression

There is no reasonable fixed lookahead that will allow the
parser to decide between a less-than expression, or method
reference.

.. 15

..

Scanner Decorator.

..
..Scanner ..Scanner Decorator ..Parser

. ..Lookahead Buffer .
.

tokens

.

tokens

The Scanner Decorator looks ahead in the token stream
when certain tokens are encountered, then potentially
modifies the token stream.
In the previous case it inserts a synthetic LT_TYPE token.

.. 16

..

Conclusions.

Java is not LR, but with some modifications we can
make it LR(1)

So far implemented nearly all of Java 8 features
(parsing is complete)

Techniques we used to solve parsing challenges:

Duplicate grammar to avoid reduce-reduce conflicts

Introduce priority declarations to fix ambiguous
grammar

Scanner decorator to enable infinite lookahead

.. 17

..

Questions!

.. 18

..

Default Modifier Shift-Reduce.

We parse all modifiers using the same production (for
methods, interfaces, classes).
This introduced a shift-reduce conflict in switch-statements:

switch (x) {
case 0:

default class A() { };
case 1:

break;
default:
}

.. 19

..

Intersection Type Cast.

In Java 8 cast expressions can have the form:

(A & B & C) x

This form conflicts with binary expressions:

(A & B & C)

The conflict is very similar to the lambda versus less-than
expression conflict.

.. 20

..

Parsing Intersection Type Casts.

We solve this conflict using the Scanner Decorator.
Whenever a left-parenthesis is encountered, the decorator
inserts the synthetic INTERCAST token if it determines that it
is part of an intersection type cast.

.. 21

